

DB-003-001544

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

March - 2022

Statistics: Paper - 503
(Statistical Inference)

(Old Course)

Faculty Code: 003

Subject Code: 001544

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- **Instructions:** (1) Q.1 carry 20 marks and Q.2 and Q.3 carry 25 marks each.
 - (2) Right hand side figures shows marks of that questions.
 - (3) Student can use their own certified calculator.
- ${f 1}$ Filling the blanks and short questions :

20

- (1) Estimation is possible only in case of a _____
- (2) A single value of an estimator for a population parameter θ is called its _____ estimate.
- (3) The difference between the expected value of an estimator and the value of the corresponding parameters is known as _____
- (4) $\sum \frac{X_i}{n}$ for i = 1, 2, 3, ..., n is a _____ estimator of population mean.

(5)	For	mean	square	error	to	be	minimum,	bias	should
	be								

- (6) An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____
- (7) If $f(x;\theta)$ is a family of distributions and h(x) is any statistic such that E[h(x)] = 0, then $f(x;\theta)$ is called
- (8) If a random sample $x_1, x_2, x_3,...x_n$ is drawn from a population $N(\mu, \sigma^2)$, the maximum likelihood estimate of σ^2 is _____
- (9) For a Gama (x,α,λ) distribution with λ known, the maximum likelihood estimate of α is ______
- (10) Maximum likelihood estimate of the parameter θ of the distribution $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}$ is _____
- (11) _____ is an unbiased estimator of p^2 in Binomial distribution.
- (12) The estimate of the parameter λ of the exponential distribution $\lambda e^{-\lambda x}$ by the method of moments is _____
- (13) For a rectangular distribution $\frac{1}{(\beta-\alpha)}$, the maximum likelihood estimates of α and β are _____ and ___ respectively.
- (14) If $x_1, x_2, x_3, ... x_n$ is a random sample from an infinite population and S^2 is defined as $\frac{\sum (x_i \overline{x})^2}{n}, \frac{n}{n-1}S^2$ is an _____ estimator of population variance σ^2 .

	(15)	Let there be a sample of size n from a normal population with mean μ and variance σ^2 . The efficiency of median relative to the mean is						
	(16)	Minimum Chi-square estimators are not necessarily						
	(17)	If a function $f(t)$ of the sufficient statistics $T = t(x_1, x_2, x_3, x_n)$ is unbiased for $\tau(\theta)$ and is also unique, this is the						
	(18)	If sufficient estimator exists, it is function of the						
	(19) Sample mean is an and est of population mean.							
	(20)	If T_1 and T_2 are two MVU estimator for $T(\theta)$, then						
2	(A)	Write the answer any three: (Each 2 marks)	6					
		(1) Define Consistency						
		(2) Define Sufficiency						
		(3) Define Uniformly Most Powerful Test (UMP test)						
		(4) Define ASN function of SPRT						
		(5) Obtain likelihood function of Negative Binomial distribution.						
		(6) Find the Cramer Rao lower bound of variance of unbiased estimator of parameter of the probability distribution $f(x,\theta) = \theta e^{-\theta x}$						
DB-0	003-0	01544] 3 [Contd	••					

(B) Write the answer any three: (Each 2 marks)

- (1) Obtain unbiased estimator of θ for $f(x,\theta) = \frac{1}{\theta}e^{-\left(\frac{x}{\theta}\right)}$ where $0 \le x \le \infty$
- (2) Prove that $E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)$
- (3) Obtain MVUE of parameter θ for Poisson distribution. Also obtain its variance.
- (4) Obtain estimator of θ by method of moments in the following distribution $f(x;\theta) = \theta e^{-\theta x}$; where $0 \le x \le \infty$
- (5) Obtain Operating Characteristic (OC) function of SPRT.
- (6) Give a random sample $x_1, x_2, x_3, ...x_n$ from distribution with p.d.f. $f(x;\theta) = \frac{1}{\theta}; 0 \le x \le \theta$. Obtain type-I and type-II errors. Also obtain power of the test for testing $H_0: \theta = 1$ against $H_1: \theta = 2$ where $c = \{x; x \ge 0.5\}$.
- (C) Write the answer any two: (Each 5 marks) 10
 - (1) State Neyman-Pearson lemma and prove it.
 - (2) If $x_1, x_2, x_3, ... x_n$ random sample taken from distribution with mean θ and σ^2 variance then $(i) t_1 = \frac{\sum x_i}{n+1} (ii) t_2 = \frac{\sum x_i}{n-1}$ Is a consistent of θ check it?

- (3) Estimate α and β in the case of Gamma distribution by the method of moments $f(x;\alpha,\beta) = \frac{\alpha^{\beta}}{\Gamma\beta}e^{-\alpha x}x^{\beta-1}; x \ge 0, \alpha \ge 0$
- (4) Obtain OC function for SPRT of Binomial distribution for testing $H_0: p = p_0$ against $H_1: p = p_1 (> p_0)$
- (5) Obtain Likelihood Ration Test:

Let $x_1, x_2, x_3, ... x_n$ random sample taken from $N(\mu, \sigma^2)$ To test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$

- 3 (A) Write the answer any three: (Each 2 marks) 6
 - (1) Define Unbiasedness
 - (2) Define Efficiency
 - (3) Define Minimum Variance Bound Estimator (MVBE)
 - (4) Define Most Powerful Test (MP test)
 - (5) Obtain likelihood function of Laplace distribution.
 - (6) Find the Cramer Rao lower bound of variance of unbiased estimator of parameter of the probability distribution $f(x,\theta) = \theta x^{\theta-1}$
 - (B) Write the answer any three: (Each 3 marks) 9
 - (1) Let $x_1, x_2, x_3, ... x_n$ be random sample taken from $N(\mu, \sigma^2)$ then find sufficient estimator of μ and σ^2 .

- (2) Obtain an unbiased estimator of population mean of χ^2 distribution.
- (3) Obtain MLE of parameter θ of $f(x,\theta) = \theta^x (1-\theta)^{(1-x)} \text{ where } x = 0,1 \text{ and } 0 \le \theta \le 1$
- (4) If A is more efficience than B then prove that Var(A) + Var(B-A) = Var(B)
- (5) Give a random sample $x_1, x_2, x_3, ... x_n$ from the distribution with p.d.f. $f(x,\theta) = \theta e^{-\theta x}$, where x > 0. Using the Neyman-Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$
- (6) Let p be the probability that coin will fall head in a single toss in order to test H_0 ; $p = \frac{1}{2}$ against H_1 ; $p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 head are obtained. Find the probability of type-I error, type-II error and power of test.
- (C) Write the answer any two: (Each 5 marks) 10
 - (1) State Crammer-Rao inequality and prove it.
 - (2) Obtain MVBE of σ^2 for Normal distribution $(0, \sigma^2)$.
 - (3) Obtain the MLE of α and β for random sample from the exponential population $f(x_i,\alpha,\beta) = y_0 e^{-\beta(x-\alpha)} \quad \text{where} \quad \leq x \leq \infty, \beta > 0. \ y_0$ being a constant.

(4) Let $x_1, x_2, x_3, ... x_n$ be random sample from the p.d.f. $f(x, p) = \frac{1}{\left(1 - q^3\right)} {3 \choose x} p^x q^{3-x}$ where x = 0, 1, 2, 3

Estimate parameter of p by the method of moment.

(5) Construct SPRT of Poisson distribution for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$. Also obtain OC function of SPRT.